
Type Inference

C++11 provides mechanisms for type inference which make the compiler deduce the
types of expressions. I’m starting the book with type inference because it can make your
code more concise and expressive. Also, a lot of examples in subsequent chapters rely on
these features.

auto

I’m sure everyone has been annoyed at least once by having to type out types like
std::map<std::string, std::vector<int>>::iterator. The new keyword auto
solves this problem by inferring the type of a variable from the initializing expression:

auto i = 5;
auto plane = JetPlane("Boeing 737");
plane.model();
for (auto i = plane.engines().begin();

i != plane.engines().end(); ++i)
i->set_power_level(Engine::max_power_level);

Note:
The keyword auto has been in C++ since the beginning, and used to mean “this
is a local variable”. However, that meaning has proven to be of no use and has
been removed from the language.

Note:
According to Bjarne Stroustrup, he had the auto feature working all the way back
in 1984, but had to remove it because of C compatibility issues. Those issues went
away when C++98 and C99 started requiring every variable and function to be
defined with an explicit type.

auto isn’t merely syntactic sugar, however. In some situations it can be not just
inconvenient, but actually di�cult or impossible to write C++11 code without auto. For
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example, when the code in a template depends on the types of the arguments, it can be
hard to specify the type explicitly. But the compiler can choose the appropriate types
once it knows the types of the arguments:

template<typename X, typename Y>
void multiply(const X& x, const Y& y)
{

auto result = x * y; // without auto, it can be hard to specify
// the type of result

// ...
}

You should be aware that variables declared with auto still have a static type just like
any other variables, and the compiler needs to have enough information (in the form of
an initializing expression) to figure the type out. This is why you can’t declare arrays with
auto, or use it for function parameters or member variables. None of the following will
compile:

void invalid(auto i) {}

class A
{

auto_m;
};

int main()
{

auto arr[10];
}

Using the keyword has a lot of advantages over specifying types explicitly:

• it reduces verbosity of the code and makes it more DRY
• it promotes a higher level of abstraction and coding to interfaces
• it helps future-proof the code as it allows types to change without necessarily

requiring code that uses them to change
• it allows for easier refactoring, e.g. changing class names or function return types
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• it allows template code to be simpler because now you can avoid specifying some
of the types for intermediate expressions by using auto

• it’s much easier to declare variables of undocumented types
• it allows you to store lambdas for later use. I’ll talk about lambdas in the next

chapter, but the key thing here is that you can’t know the type of lambda expressions
so you can’t declare a variable to assign a lambda expression to without auto.

Note:
DRY stands for Don’t Repeat Yourself. This principle was defined in the book
called The Pragmatic Programmer by Dave Thomas and Andy Hunt. It promotes
reduced repetition of information.

As a rule of thumb, you should always use auto unless you require a type conversion,
i.e. the type inferred by auto wouldn’t be the type you want. A type conversion may be
required, for example, when you get some proxy type from a template and you want it to
decay.
A common objection to auto is that it obscures the type information and makes code hard
to comprehend for a new programmer. It is a valid consideration, but the benefits outlined
above outweigh it. The fact that the types of variables are less obvious is mitigated to a
large degree by IntelliSense and by the improved readability achieved by not having type
name duplication all over the code.
Consider that similar objections have been made for a long time about other C++ features
such as operator overloading, and yet they contribute to more powerful and expressive
code. auto is in the same camp.
An interesting thing about auto is that the compilers have had the ability to infer types
for a long time as they had to figure out the types of template arguments. The mechanism
behind auto is the same as that used for templates:

template<typename T>
void f(T t)
{}
f(expr); // T is deduced from expr
auto var = expr; // type of var is deduced from expr, same as above

auto can be used to declare multiple variables, as long as all the initializing expressions
result in the same deduced type:
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auto a = 5.0, b = 10.0;
auto i = 1.0, *ptr = &a, &ref = b; // regular variable, pointer and

// reference declarations
auto j = 10, str = "error"; // error: initializing

// expressions of different types

You can add const or volatile qualifiers to your auto declarations, as well as turn
them into a pointer, a reference or an rvalue reference (rvalue references will be discussed
in a later chapter):

map<string, int> index;

const auto j = index;
auto& ref = index;
const auto& cref = index;
auto* ptr = &index;

If you aren’t declaring a reference, some type transformations are applied automatically:

• the const and volatile specifiers are removed from the initializing type
• arrays and functions are turned into pointers.

For example:

const vector<int> values;
auto a = values; // type of a is vector<int>
auto& b = values; // type of b is const vector<int>&

volatile longclock = 0;
auto c = clock; // c is not volatile

JetPlane fleet[10];
auto e = fleet; // type of e is JetPlane*
auto& f = fleet; // type of f is JetPlane(&)[10] - a reference

auto g = func; // type of g is int(*)(double)
auto& h = func; // type of h is int(&)(double)
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You can use either assignment or copy initialization syntax to initialize your auto variables,
unless the inferred type has an explicit copy constructor:

int i = 10;

auto a = i;
auto b(i);

struct Expl
{

Expl() {}
explicit Expl(constExpl&) {}

};

Expl e;
auto c = e; // illegal

Decltype

Another construct that deals with inferring types is the decltype specifier. You pass an
expression to it, and it figures out the type of the expression:

int i = 10;
cout << typeid(decltype(i + 1.0)).name() << endl; // outputs "double"

Note that it does not evaluate the expression, so in the example below the value of a
won’t change outside the context of decltype:

decltype(a++) b;

decltype is considered to be a type specifier so the intention is for you to be able to use
decltype(expr) in place of a type name anywhere:

vector<int> a;
decltype(a) b;
b.push_back(10);

decltype(a)::iterator iter = a.end();
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It is particularly useful when writing templated functions where the return type depends
on the template arguments:

template<typename X, typename Y>
auto multiply(X x, Y y) -> decltype(x * y)
{

return x * y;
}

The example above uses the new syntax for declaring functions with a trailing return type.
This is discussed in detail below.
Because decltype is a type specifier, it ignores const and volatile qualifiers. If you
want to get a const reference from decltype, put the expression into parentheses:

is_reference<decltype((i))>::value; // evaluates to true

Side e�ects

decltype does not evaluate the expression that’s given to it. So, for example, here the
value of a won’t change outside the context of decltype:

auto a = 10;
decltype(a++) b;
cout << a << endl; // outputs 10 as value of a is unchanged

Nonetheless, even though the expression isn’t evaluated, decltype can still have a
potential side e�ect due to template instantiation. Consider this example:

template <int I>
struct Num
{

static const auto c = I;
decltype(I) _member;
Num() : _member(c) {}

};
int i;
decltype(Num<1>::c, i) var = i; // type of var is int&
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I passed an expression with the comma operator to decltype in the last statement of
this example. The comma operator returns the last argument, so var will have the same
base type as i, but the compiler will still need to instantiate the Num template to make
sure the expression is valid. This template instantiation is a side e�ect, which you may
sometimes prefer not to happen.

Trailing return types

The keyword auto has a di�erent meaning when it’s used in conjunction with function
declarations. C++11 introduces an alternative syntax for declaring functions, where the
return type is specified after the parameters (hence trailing return type). In order to use
this syntax, you have to start your function declaration with auto:

template<typename X, typename Y>
auto multiply(X x, Y y) -> decltype(x * y)
{

returnx * y;
}

The reason for introducing this syntax is that it allows you to declare templated functions
where the return type depends on the type of the arguments. With the old syntax, there
was a scoping problem:

template<typename X, typename Y>
ReturnType multiply(X x, Y y)
{

returnx * y;
}

I want ReturnType to be the type of (x * y) but I have no way of specifying it, because
x and y aren’t in scope yet:

template<typename X, typename Y>
decltype(x * y) multiply(X x, Y y) // x and y in decltype aren’t
{ // in scope yet!

return x * y;
}
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This is where trailing return types come to the rescue. Putting the return type after the
parameter list allows the parameters to be used to specify the return type.

Note:
There is a hack which allows you to use type names instead of the parameter
names, but it’s ugly and error-prone:

template<class X, class Y>

decltype(*(X*)(0) * *(Y*)(0))

mul2(X x, Y y)

{

return x * y;

}
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